已知抛物线C:y²=8x与点M(-2,2),过C的焦点且斜率为k的直线与其交于A,B两点,若向量M

已知抛物线C:y²=8x与点M(-2,2),过C的焦点且斜率为k的直线与其交于A,B两点,若向量MA与向量MB的向量积=0,求k

  法一:将k代入直线方程,求交点,计算内积,解出k。k自始至终参与计算,烦。
  法二:设其中一个交点,共线求另一个交点,计算内积,求出两交点,计算k。
  法三:参数方程法(定式)。该法二的简化,设抛物线上两点(2pt1^2,2pt1),(2pt2^2,2pt2)(p是抛物线的焦准距,这里2p=8),三点共线找出t1,t2之间的关系(这里是过焦点,定然t1*t2=-1/4),再按条件计算t1,t2(这里是内积,定能求出t1+t2=?,解一元二次方程,即得t1,t2),最后求k。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2014-01-04
很明显,抛物线C的焦点坐标为(2,0),∴AB的方程可写成:y=k(x-2)=kx-2k,
∴A、B的坐标可分别设为(m,km-2k)、(n,kn-2k),
∴向量MA=(m+2,km-2k-2)、向量MB=(n+2,kn-2k-2)。

联立:y=kx-2k、y^2=8x,消去y,得:k^2x^2-4k^2x+4k^2=8x,
∴k^2x^2-(4k^2+8)x+4k^2=0。
显然,m、n是方程k^2x^2-(4k^2+8)x+4k^2=0的两根,∴由韦达定理,有:
m+n=(4k^2+8)/k^2、mn=4。

∵向量MA·向量MB=0,∴(m+2)(n+2)+(km-2k-2)(kn-2k-2)=0,
∴mn+2(m+n)+4+k^2mn-(2k+2)k(m+n)+(2k+2)^2=0,
∴(1+k^2)mn-(2k^2+2k-2)(m+n)+(2k+2)^2+4=0,
∴4(1+k^2)-(2k^2+2k-2)(4k^2+8)/k^2+(2k+2)^2+4=0,
∴(1+k^2)-(2k^2+2k-2)(k^2+2)/k^2+(k+1)^2+1=0,
∴(1+k^2)-(2k^4+4k^2+2k^3+4k-2k^2-4)/k^2+(k^2+2k+1)+1=0,
∴(1+k^2)-(2k^2+4+2k-2)-(4k-4)/k^2+k^2+2k+2=0,
∴1-(4k-4)/k^2=0,∴k^2-4k+4=0,∴(k-2)^2=0,∴k=2。

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网