THERMODYNAMICS AND PHASEEQUILIBRIA IN CRYSTALLINE PETROLOGY

如题所述

第1个回答  2020-01-20

Ma Hongwen

1 Basic Principle

Gibbs Free Energy Function

1.1 Re in volatile-free systems(p/T):Fe2+-Mg exchange

地球科学进展

At equilibium,then

Δμ=0=ΔG+RTlnK

ΔG=-RTlnK

Equilibrium constant

K=aFs(opx)·aDi(cpx)/aEn(opx)·aHd(cpx)

For multicomponent systems

地球科学进展

Partition coefficient

Kd=xFs(opx)·xDi(cpx)/xEn(opx)·xHd(cpx)

Gibbs free energy change for a reaction

ΔG=(ΔGTp=1+(ΔGpT=T=ΔH-TΔS+ΔVp(p >> 1atm)

lnK=ΔS/R-ΔH/RT-ΔVp/RT

Basic equation for geothermobarometry.

Example:Fe2+-Mg exchange in grt-lherzolite(Brey et al.,1990)

1.2 Re in volatile-bearing systems(

6Fe2SiO4(olv)+O2(g)=3Fe2Si2O6(opx)+2Fe3O4(spn)(lherzolite)

2FeO(liq)+1/2O2(g)=Fe2O3(liq)(magma)

6FeS(po)+2O2(g)=3FeS2(py)+Fe3O4(mgt)(sulfide oxd)

KAlSi3O8(Or)+Fe3O4(Mgt)+H2O(g)=KFe3AlSi3O10(OH)2(Ann)+1/2O2(g)(granite)

KAlSiO4(liq)+1/2SiO2(liq)+3/2Mg2SiO4(liq)+H2O(g)=KMg3AlSi3O10(OH)2(Phl)(kimberlite)

FeO(silicate liq)+1/2S2(g)=FeS(sulfide liq)+1/2O2(g)(immiscibil-ity)

2 Geothermobarometry⇒Lithospheric Mapping

Example:Cenozoic thermal and redox state of the lithosphere in E.China

Data processing:MAFICS·FOR in software ofthermodynamics in crystalline petrology(Ma Hongwen,1999)

3 Phase equilibria⇒Modeling of magmatic processes

Example:Chemical mass transfer in magmatic processes(Ghiorso et al.,1980,1983,1995)

3.1 Basic thermodynamic relations

Re: Fe2SiO4(sol)=Fe2SiO4(liq)

Molar Gibbs free energy of silicate liquid

地球科学进展

Molar Gibbs free energy of solid components

ΔG0=ΔH0-TΔS0+CpdT-T(Cp/T)dT+[V0+aV(T-298)]p-(βV/2)p2

3.2 Crystallizing reactions:solid=liquid

地球科学进展

Continue

3.3 Solid-liquid-vapor

database:systems in SiO2-Al2O3-Fe2O3-FeO MgO-CaO-Na2O K2O-(H2O)

3.4 Thermodynamic parameters

(1)Thermodynzmic properties for the end member solid components(Berman,1988)

(2)Activity/composition models for end member solid components(cf.Ghiorso et al.,1995)

(3)Thermodynamic properties for the liquid components(cf.Ghiorso et al.,1995)

(4)Regular solution type interaction parameters(wij)(Ghiorso et al.,1995)

3.5 Software:MELTS,in ANSI C,UNIX workstation via FTP internet code

fondue.geology.washington.edu

(1)Revising/updating the parameters for the liquid

(2)Modeling equilibrium or fractional crystallization of specified bulk compositions

(3)Modeling crystallization paths under

constrained

total enthalpy

total entropy

total volume

any combination of the above constraints

(4)Modeling assimilation or magma mixing

3.6 Example:mantle partial melting modeling(Hirschmann et al.,1998)

Sample:peridotitemm3,mg=0.90

p=1.0GPa,

=FMQ-1,anhydrous

Experiments:Baker&Stolper(1994)

(1)Residual phases and mineral modes

Remarks:

phase-out

cpx F=18%

opx F=65%

spn F=93%

F<18% lherzolite/cpx-bearing lherzolite

F>18% harzbergite

F>45% impossible for natural melting

⇒ dunite:possibly cumulate

wehrlite:cumulate(not residue)

(2)Melting temperature

Remarks:

T(calc)>T(exp)~100℃

—anhydrous/hydrous,

,a/x relations

(3)Melt compositions

Remarks:excellent agreement

Al2O31%~2% SiO23%~4% lower;CaO+MgO 2%~3% higher

—hydrous,

,a/x relations,trace Cr、Ti、Na

4 Modeling of immiscibility in silicate liquids(Ma Hongwen et al.,1998)

Immiscibility in silicate liquids,predicted by criterion:

地球科学进展

Compositions and amounts of 2L,calculated from oxide partition coefficients between Si-and Fe-rich melts:

地球科学进展

T(K),P(GPa),Xi,mole fraction of oxide i,

Ho,Si,and Fe,homogeneous,Si-,and Fe-rich melts,

Aito Di,aito di,constants.

Uncertainties:SiO2,Al2O3,and FeO,3.0%~4.0mol%

other oxides,<1.0mol%

predicted 2L amounts,~1.0mol%

Mgt-Apt ore-forming processes can be simulated.

4.1 INTRODUCTION

Greig(1927),system FeO-SiO2,2nd liq in pure SiO2liq.

Roedder(1951),immiscibility in K2O-FeO-Al2O3-SiO2.

Experiments,effects of T,p,fO2,xion immiscibility(Visser et al.,1979a,1979b,1979c;Philpotts,1982;Philpotts etal.,1983;Hess etal.,1982;Naslund,1983;Freestone et al.,1983)

Models:

Currie(1972),GFe+GSi<GHopredicting immiscibility

Ghiorso et al.(1983),regular solution model,deviated significantly from the experiments(Philpotts,1979).

4.2 THERMODYNAMIC MODEL

For an immiscible equilibrium:

ΔG=ΔH0-TΔS0+PΔV0=0 (1)

assuming that ΔCp=0,ΔV0constant,Smixideal.

The total G of a mixture of Ho,Si-and Fe-rich melts:

G=∑nigi=∑niμi(i=1,n) (2)

地球科学进展

In a closed system,mass balance must be maintained,i.e.,

地球科学进展

Equilibrium constant for Eq.(4):

地球科学进展

The Δg of ith component for Eq.(4):

地球科学进展

Ho,Si-,Fe-rich phases are all liquids with various amounts of oxides.Postulating regular solution model:

lnai=lnXii/T+PΔVi/RT(7)

lnγi=[φi+PΔVi/R]/T (8)

where ΔVi,difference between partial molar volume of i in the liquids and that in pure ith com-ponent liquid;φi,compositional dependence of γiin the melt.

The extent of

,and

variations with melt compositions have little difference,in corporated into φi,and similarly

,,and

in Eq.(6)into ΔV:i

地球科学进展

assuming φiis a linear function of liquid compositions,

地球科学进展

where Ai,Bi,Ci,corresponding to

,andΔVi/R,and∑DiXi,the compo sitional dependence of γi.

When an immiscible reaction is at equilibrium,

(1)

地球科学进展

(2) GSi=GFe (13)

地球科学进展

where

,and

,differences of molar enthalpy,entropy,and volume of ith oxide between the 2 L.

Oxide partition coefficients:

地球科学进展

where ai,bi,ci,corresponding to

/R,

/R,

ΔVi/R,and∑diXi,compositional de

pendence of γi.

4.3 MODEL LIMITS

Compositions(wt%):SiO244.8~73.3,TiO20~12.7,Al2O32.1~19.0,FeO*0.9~40.9,MgO0~10.3,CaO0~12.3,Na2O,0~6.1,K2O0~11.2,P2O50~13.7;T=960~1550℃,p=1atm~1.5GPa,

=100.67~IW.

4.4 PREDICTION OF IMMISCIBILITY

When immiscibile 2L are at equilibrium,

ΔG=∑ΔgiXi=0

地球科学进展

At beginning of an immiscible reaction,the amount of one of the 2L,say Fe-rich liquid,close to zero,i.e.,b≈0,a≈1,and ln

,then

地球科学进展

Giving criterion of immiscibility:

ΔG=∑ΔgiXi≤0 (19)

For all components,

地球科学进展

239 immiscible experiments,232 correctly predicted

2L composition standard deviations(Fig.1):3.0mol%~4.0mol% for SiO2,Al2O3,and FeO;<1.0mol% for TiO2,MgO,CaO,Na2O,K2O,and P2O5;~1.0mol% for a mounts of both Si-and Fe-rich liquids.

4.5 MODELING OF Mgt-Apt ORE-FORMING PROCESS

Example:Yangyuan mgt apt ore deposit,Hebei province

Host rock:apt 6%~10%;spherulitic bio-pyx-syenite,evidence of immiscibility

globules:Or megacrystals with pyx,bio,mgt

mesostasis:pyx,bio,apt,interstitial Or

modeling:p=0.5GPa,

=FMQ,T=950~1250℃

ΔG=-0.021~-0.103

At~1250℃,Si-/Fe-rich melts,<6mol%/>94mol%;MgO,CaO,K2O in 2L tend to converge;

1200℃,homogeneous T of gl.Inc.(Hou,1990).~1100℃,Si-/Fe-rich melts,~25mol%~75mol%,

consistent with:Si-rich,globules;Fe-rich,mesostasis,resemble syenite/alkaline pyrox-enite

Yangyuan mgt apt deposits,T=1250~1150℃.

Solubility of P2O5in Fe rich melts controlled by T,

<1100℃,unfavorable to mgt-apt ore-forming

>1100℃,highly enriched in Fe-rich liq(pyroxenite)

5 CONCLUDING REMARKS

Phase equilibria-exactly describing chemical mass transfer processes in petrology;

Thermodynamics-a powerful tool for constraining conditions of chemical reactions and genesis for crystalline petrology.

References

马鸿文.1993.硅酸盐岩浆中的硫化物不混溶作用模拟.中国科学(B辑),23(9):986~992

马鸿文,胡颖,袁家铮,方同辉.1998.岩浆不混溶作用模拟:热力学模型与数值方法,地球科学,23(1):41~48

马鸿文.2001.结晶岩热力学概论(第二版).北京:高等教育出版社,297

马鸿文.1999.结晶岩热力学软件.北京:地质出版社,340

Brey G P,Kohler T P.1990.Geothermobarometry in four-phase lherzolite:Ⅱ.New thermobarmeters,and practical assessment of existing thermobarometers.J Petrol 31:1353~1378

Berman R G.1988.Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2.J Petrol 29:445~522

Ghiorso M S,Sack R O.1995.Chemical mass transfer in magmatic processesⅥ.A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures.Contrib Mineral Petrol 119:197~212

Hirschmann M,Ghiorso M S,Wasylenki L E,Asimow P D,Stolper E M.1998.Calculation of peridotite partial melting from thermodynamic models of minerals and melts.Ⅰ.Review of methods and comparison with experiments.J Petrol 39:1091~1115

Ma Hongwen.1994.Modeling of sulfide immiscibility in silicate magmas.Science in China,Series B,37(9):1138~1146

Ma H,Hu Y,Fang T.1999.TWOLIQ:A FORTRAN77 program for simulating immiscibility in silicate liquids.Computer&Geosci,25:151~159

本回答被网友采纳
    官方服务
      官方网站

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网