哥德巴赫猜想解决了吗?

如题所述

哥德巴赫猜想最难的地方在于人类目前还没有什么好的解决办法。目前世界最好的结论是“1+2”,也就是说,任意一个大偶数可以被拆为一个素数与一个殆素数的和,所谓殆素数就是两个素数的积。当年陈景润利用筛法,得到了这个结论,与此同时也意味着筛法已经“物尽其用”,不能再有任何突破了,想要证明“1+1”——哥德巴赫猜想,就得寻找新的方法。

实际上,我们常说的哥德巴赫猜想,是“二素数猜想”,“三素数猜想”——充分大的奇数可以被拆为三个素数之和,已经被俄罗斯数学家 И.М.Виноградов 证明,利用的是圆法和线性三角和估计。想了解三素数定理的难度,这是现成的,直接找论文读就可以了。

如果想了解二素数猜想的难度,可以先试着了解筛法的难度,因为猜想的难度肯定不小于筛法的难度。下面我放了一张潘承洞、潘承彪的《解析数论基础》的一张图片,这一页只是介绍组合筛法这一工具,我想让小学生体会一下恐怖应该不成问题吧。

在数论中常常有这样的现象,小学生都能看懂的问题,但是却是世界级别的难题,尤其是关于素数的问题,随便一问很可能就是未解之谜。数学之神欧拉说,素数可能是人类心灵永远无法参透的秘密花园(原话记不清了),的确如此,素数没有快速验证、预测的公式,而想要做精致的研究可想而知有多难。素数很“散”,串不到一根有效的理论之绳上,否则一牵而起,也就好说了,但是这根深刻的绳线被埋藏在数学世界的最深处……

许多人声称证明哥德巴赫猜想,一般可能得到的是华罗庚曾经证明的结论:几乎对所有偶数,哥德巴赫猜想成立。搞研究常常会撞车,所以要充分了解前人成果,才不会走弯路,走老路。

我看了许多邀请的问题,才知道哥德巴赫猜想为什么叕被提起,原来是说有高中生证明了。不怕大家笑话,我记得我高中的时候也证明过,证明的基本思路是:给定 N,计算 N 内有多对和不同的素数组合(且其和不超过 N),然后与 N 以内的偶数个数作比记为 R,求极限,如果比值小于1,说明小于 N 内至少存在一个偶数,分配不到一个素数对,则哥德巴赫猜想不成立。这里用了素数定理来作估计,其中的估计细节我记不清了。这个思路没太大问题,嗯……只是实际操作,太多需要精确估计的地方只能不断地妥协。

高中生有没有可能证明哥德巴赫猜想呢?如果你非要问我,我只能说……

我没看到那个高中生关于哥猜的“证明”,现已删贴。看到人们的评论,我挺失望,我原想是一位数学竞赛大神有什么犀利的操作,然后在一个不显然易见的细节翻了跟头,没想到评论区完全一边倒……

我有点担心那个孩子被网友深深地伤害,再也对数学提不起兴趣,那真是一件悲哀的事情。

我觉得大多数人,对数学家有点错误的认知,就好比一个人证明了某某世界猜想,人们的第一反应是,他真天才,他是真是聪明绝顶!而内行人往往会感慨,他真是有勇气,他真辛苦,当然也很聪明(这是最后才要感慨的),我希望人们能采取后者的看法。

数学证明是一座无形的摩天大厦,数学工作者需要确保其中每一零件是否坚固,因为一但建立,它就可以经历永恒的考验。

证明哥德巴赫猜想有多难,这个我也说不清,如果非要比喻,就好比中学课本上的证明是搭积木,而真正数学家搞的证明都是摩天大厦,用积木搭大厦,不亦悲乎?

我也曾妄想过,是的,我也狂过。不过每一个高楼大厦的梦,不都是儿时搭积木的刹那开始的吗?

温馨提示:答案为网友推荐,仅供参考
第1个回答  2011-10-05
哥德巴赫猜想(Goldbach Conjecture)大致可分为两个猜想(前者称"强"或"二重哥德巴赫猜想,后者称"弱"或"三重哥德巴赫猜想):1.每个不小于6的偶数都可以表示为两个奇素数之和;2.每个不小于9的奇数都可以表示为三个奇素数之和。考虑把偶数表示为两数之和,而每一个数又是若干素数之积。把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。1966年陈景润证明了"1+2"成立,即"任何一个大偶数都可表示成一个素数与另一个素因子不超过2个的数之和"。
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想(Goldbach Conjecture)。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。   哥德巴赫(Goldbach ]C.,1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格(现名加里宁城);曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年,到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职。   1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:   "我的问题是这样的:随便取某一个奇数,比如77,可以把它写成三个素数(就是质数)之和:77=53+17+7;再任取一个奇数,比如461,461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。   这样,我发现:任何大于5的奇数都是三个素数之和。但这怎样证明呢?   虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是个别的检验。"   欧拉回信说:“这个命题看来是正确的”。但是他也给不出严格的证明。   同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。不难看出,哥德巴赫的命题是欧拉命题的推论。   事实上,任何一个大于5的奇数都可以写成如下形式:2N+1=3+2(N-1),其中2(N-1)≥4。若欧拉的命题成立,则偶数2N可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。   但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。现在通常把这两个命题统称为哥德巴赫猜想。
编辑本段历史
  哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。   直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。
编辑本段进展
  关于偶数可表示为 a个质数的乘积 与b个质数的乘积之和(简称“a + b”问题)进展如下:   1920年,挪威的布朗证明了“9 + 9”。   1924年,德国的拉特马赫证明了“7 + 7”。   1932年,英国的埃斯特曼证明了“6 + 6”。   1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。   1938年,苏联的布赫夕太勃证明了“5 + 5”。   1940年,苏联的布赫夕太勃证明了“4 + 4”。   1948年,匈牙利的瑞尼证明了“1+ c”,其中c是一很大的自然数。   1956年,中国的王元证明了“3 + 4”。   1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。   1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。   1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及意大利的朋比利证明了“1 + 3 ”。   1966年,中国的陈景润证明了 “1 + 2 ”。本回答被提问者采纳
第2个回答  2011-10-05
还没有
陈景润的研究只是最接近于哥德巴赫猜想的
第3个回答  2019-10-29
  当年徐迟的一篇报告文学,中国人知道了陈景润和哥德巴赫猜想。
  那么,什么是哥德巴赫猜想呢?
  哥德巴赫猜想大致可以分为两个猜想:
  ■1.每个不小于6的偶数都是两个奇素数之和;
  ■2.每个不小于9的奇数都是三个奇素数之和。
第4个回答  2021-01-15

房地产的哥德巴赫猜想,大数据严重失真?控制不住了吗?

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网