请人帮翻译

2 The critical parts of the machine are subjected to dyt~amic stresses whilst the shearing is in operation. The magnitude of the stress at any location changes as the cutting progresses from one point to another. The machine experiences repetitive stresses if the shearing is in the continuous mode of operation. The main aim of the present paper is to study this aspect of dynamic behaviour. The dynamic beh~'viour is also compared with quasi-static behaviour which is based on the simplifying assumption that the total response is the super- position of a number of static responses with the cutting force at different locations.
Since the force needed for shearing is known and since the shearing process is gradual, the work done during cutting is determined easily. Since the duration of cutting is a fraction of the time taken for one revolution of the eccentric shaft, the fluctuation in speed likewise is determined easily. From the maximum energy consumed during cutting, the Horse-power requirement of the prime mover is estimated. Once the speed of the intermediate shafts is assumed, design of the shaft and the associated anti-friction bearings is a straightforward exercise. The only further complex parts of the machine for which detailed analysis is called for are the stationary housing, consisting of the two side-stands, the hold-down, the bottom plate and the moving blade-carrier.
The blade of the guillotine shear is inclined at an angle to the horizontal in order to enable gradual cutting of the plate. This helps in reducing the shear area at any instant of time, as shown in Fig. 1, For a plate to be cut of thickness t, the width of cut at any instant of time is t/tan ct. Since this will be small in comparison with the maximum width to be cut (w), the cut takes place over a finite period of time. If the mean velocity of the blade is v, then the total time needed for cutting the maximum width of the plate is: T= w tan ct/v The cutting force experienced by the blade is given by: F= t-'r/tan z~ (2) where r is the ultimate shear strength of the material.
In the case of the over-crank shear (Fig. 2), the eccentric shaft is located in the top half of the shearing machine along with the connecting link and the bladecarder. The line of stroke of the blade passes through the centre-line of the eccentric shaft. In the case of the under-crank shear (Fig. 3), the eccentric shaft is located in the bottom half with the blade-carrier in the top portion. Hence the height of the over-crank shear is always greater than that of the under-crank shear. Moreover, in the case of the under-crank shear, there is an offset (e) between the line of stroke of the blade carrier and the center-line of the eccentric shaft, the offset being due to the space below the bottom-dead-center position of the moving top blade being occupied by the stationary bottom blade.

2 机器的紧要关头的部份受制于 dyt~amic 压迫力一会儿那剪羊毛在运转。 大小那压迫力在任何的位置变化当做那切断进步从一点到另外的。 机器经验重复的压迫力如果那剪羊毛是在那连续的操作模态。 主要部份目标现在纸是到研究这一个方面电动行为。 电动 beh~'viour 也是比较与以单一化假定为基础的类似-静电行为那总数回应是超级者- 位置一些静电反应与那切断在不同的位置力量。
因为那力量对剪羊毛的$$1需要是已知的和自从剪羊毛以后程序是逐渐的, 工作完成了在切断期间是坚决的容易地。 自从期间以后切断是为一革命被采取的时间的一个分数那怪人桥, 速度的变动同样地是坚决的容易地。 从最大值能源消耗在切断期间, 马-力量的需求那精华动的人是估计。 一经中间物桥的速度是假装的, 设计桥和那联合的反摩擦举止是一笔直的练习。 那唯一的更远合成物机器的部份为哪一个详细的分析是呼叫为是那静止的住屋, 有那二边-台子, 那把握-向下的, 那底部碟子和那感人的刀锋-运送者。
断头台的刀锋修剪是使在倾向一角度到那水平线为了要使逐渐的能够切断那碟子。这在减少方面帮助那修剪在任何的区域立即时间, 如图 1 所示, 为一碟子是削减厚度 t, 宽度削减在任何的立即时间是 t/鞣制革 ct。 因为这意志和最大值宽度比较起来很小是削减 (w), 那削减发生在一之上有限的时期时间。 如果低劣的速度那刀锋是 v, 然后那总数时间的需要切断那最大值宽度那碟子是: T= w 鞣制革 ct/v 那切断力量富有经验的被刀锋有被: F=t-'r/鞣制革 z~(2) 哪里 r 是终极修剪力量那材料。
在那的情况上面-脾气暴燥的修剪 (图 2), 那怪人桥位于那顶端一半的那剪羊毛机器向前与那连接联编和 bladecarder。 线笔划那刀锋途径完成的那中心-线那怪人桥。 在那的情况在-之下脾气暴燥的修剪 (图 3), 那怪人桥位于那底部一半与那刀锋-在最上面的部分中的运送者。 因此高度那结束-脾气暴燥的修剪总是比那棒那在-之下脾气暴燥的修剪。 而且, 在那的情况在-之下脾气暴燥的修剪, 有一抵销 (e) 在那之间线笔划那刀锋运送者和中心-线那怪人桥, 那抵销存在适当的到那空间在下面那底部-正中央位置那感人的顶端刀锋存在占领被那固定之物体底部刀锋。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-03-18
2机器的关键部件都受到DYT〜AMIC,而剪应力操作。应力切割任何位置的变化幅度,从一个点到另一个进步。机器出现反复讲,如果在连续操作模式是剪切。本文件的主要目的是研究这方面的动态行为。 BEH〜'动态viour也比较准静态行为的基础上,总的反应是超级地位与切削力的数量在不同地点的静态响应的简化假设。
由于所需的剪切力是已知的,自剪的过程是渐进的,切割过程中所做的工作是很容易确定。由于切割的持续时间是一个偏心轴的革命所用的时间的一小部分,在速度上的波动,同样是很容易确定。从切削过程中所消耗的能量最大,估计马力要求的原动力。一旦假定中间轴的速度,轴的设计及相关的抗摩擦轴承是一个简单的锻炼。只会进一步复杂机器的详细分析,被称为部分是固定的住房,包括两个侧看台,保持下来,底板和刀片的移动载体。
剪板机刀片倾斜到水平的角度,以便逐步切割的钢板。这将有助于减少在任何时刻的剪切区域,如图所示。 1,对于切板厚度t在任何时刻,切宽度为T /谭CT。由于这将是在被削减的最大宽度(W)比较小,切需要在一个有限的时间内举行。如果刀片的平均速度为V,则切割的钢板最大宽度所需的总时间是:F = T-'R /:T = W谭CT / V切削力刀片经历谭Z〜(2)其中r为材料的最终剪切强度。
在超过曲柄剪(图2)的情况下,偏心轴坐落在剪毛机的顶部,随着承上启下和bladecarder的一半。刀片的行程路线,通过偏心轴的中心线。下曲柄剪(图3)的情况下,偏心轴位于下半部用刀片在顶端部分载波。因此,高度超过曲柄剪总是大于下曲柄剪。此外,根据曲柄剪的情况下,有一个偏移量(E)之间的刀架的行程和线路中心线的偏心轴,抵消由于下方的底部死的空间中心位置移动顶级刀片固定底部刀片被占领。
第2个回答  2012-03-19
关键零件的机器受到静脉血栓形成~胺应力而剪切操作。应力的大小在任何位置的变化为切割进展从一点到另一个。该机的经验反复强调如果剪切是在连续操作模式。主要目的是研究这方面的动态行为。动态行为~ 'viour也比较准静态行为是基于简化的假设,总的反应是超级-位置的多个静态反应与切削力在不同的地点。

由于部队所需的剪切是已知的,由于剪切过程是渐进的,期间所做的工作是确定易切削。由于持续时间的一小部分的时间为一个革命的偏心轴,波动速度同样是容易。从最大能源消耗在切割,马力要求的主要推动者是估计。一旦速度的中间轴是假设,设计了轴和相关的减摩轴承是一个简单的运动。只有进一步复杂的机械零件的详细分析即是固定的住房,包括一side-stands,压紧,底板与活动刀片载体。

刀片的剪切机是在一个倾斜角度的水平,以便使逐步切割板。这有助于减少剪切面积在任何时间即时,如图1所示,一个被剪板的厚度,宽度减少在任何时间即时影像是/谭。由于这是比较小的最大宽度被削减(宽),减少发生在一段有限的时间。如果平均速度的刀片,然后总需要时间为最大切割宽度的板:=瓦谭克拉/五切削力所经历的叶片是由:= - 'r /谭与~(2)如果是的极限承载力材料。

在案件的over-crank剪切(图2),偏心轴位于前一半的剪切机与连接杆、bladecarder。线中风的刀片通过中心线的偏心轴。在案件的under-crank剪切(图3),偏心轴位于底部的一半与刀片载体的顶端部分。因此,高度的over-crank剪切总是比这更大的under-crank剪。此外,在案件的under-crank剪切,有一个偏移(欧)之间的界线中风承运人的刀片和中心的偏心轴,偏心是由于空间下方的下死点位置移动顶部叶片被占用的固定底部叶片。

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网