赋值的赋值语句

如题所述

将确定的数值赋给变量的语句叫做赋值语句。各程序设计语言有自己的赋值语句;赋值语句也有不同的类型。所赋“值”可以是数字,也可以是字符串和表达式。
注意很多语言都使用“等于号”(即“=”)来作为赋值号,所以可能和和平时的理解不同,在使用的时候应予以注意。 借助于F的绝对值φ,可以把分析学上的一些概念移植于F。设{αi}是F的一个序列。若对于每个实数ε>0,总有一个自然数n0,使得当m,n≥n0时,恒有φ(αm-αn)<ε,则称{αi}是(F,φ)的一个φ柯西序列。若对于序列{αi},有α∈F,使得当n≥n0时恒有 φ(αn-α)<ε则称{αi}是φ收敛的,而α称为它的φ极限。若(F,φ)中每个φ柯西序列都是φ收敛的,则称F关于φ是完全的,或者说(F,φ)是完全域(complete field)。实数域R或复数域C关于通常的绝对值是完全的,而K.亨泽尔的P进数域Qp则是一个非阿基米德绝对值的完全域。对这两种域作统一的处理,正是发展赋值理论的一个主要出发点。F上所有形的级数,称为F上关于文字X的形式幂级数。按照通常的加、乘运算,它们组成一个域,称为F上的形式幂级数域,记作 F((x))。,以及ρ(0)=0,于是得到一个完全域(F((X)),φ)。
当φ是阿基米德绝对值时,有著名的奥斯特洛夫斯基定理:若F关于阿基米德绝对值φ是完全的,则F连续同构于R或C。 非阿基米德绝对值这个概念还可以作如下的推广。设 Г是一个有序交换群,其运算为乘法,单位元素为1。设0是一个符号,它与Г的元素r,满足r·0=0·r=0·0=0,以及0<r。若φ: F →Г∪{0}是个满映射,满足:①φ(α)=0当且仅当α=0;②φ(αb)=φ(α)·φ(b);,则称φ是F的一个赋值.或者说F是有赋值φ的赋值域,记作(F,φ)。Г称为φ的值群。当Г是正实数乘法群时,φ就是前面所说的非阿基米德绝对值。在赋值域(F,φ)中,子成一个环,称为φ 的赋值环。F的子环A成为某个赋值的赋值环,当且仅当对于F的每个元素α,必有α∈A或者α_1∈A。
从域F的一个子环A 到某个域K 的一个同态映射B,如果满足:①对于α∈F-A,有α_1∈A以及α_1B=0;②B把A的单位元素映射到K的单位元素,那么B称为F的一个位。域的每个位,显然给出一个赋值环;反之,从域的赋值环也不难作出域的一个位。因此,赋值、赋值环和位这三个概念密切相关。位还是代数几何中的一个重要概念,早在R.戴德金和H.韦伯的经典著作中就有了它的雏型。赋值自W.克鲁尔于20世纪30年代初提出以后,赋值理论广泛应用于代数数论、类域论以及代数几何等方面;到了60年代,它又与泛函分析有着日益增长的关联。 设Г是赋值φ的值群,Δ是Г的一个子群。若对于Δ的每个元素δ,Г中所有满足δ-1<у<δ的元素у也属于Δ,则Δ称为Г的一个孤立子群。{1}和Г都可以作为Г的孤立子群。以下设Г≠{1}。由于Г是有序的,Г中所有的孤立子群按包含关系成一个全序的集。除Г 本身外的所有孤立子群,按包含关系所成全序集的序型定义为Г的阶。若φ的值群Г的阶是m,就称φ是m阶赋值。因此,所谓一阶赋值,就是指值群只有{1}为其真孤立子群的赋值。有序交换群的阶为1,当且仅当它保序同构于某个由实数所成的乘法群。这个事实表明,一阶赋值正是前面所定义的非阿基米德绝对值。
任何拓扑域(F,τ)只能是连通的,或者完全不连通的。如果τ是F的一个局部紧拓扑,那么(F,τ)称为局部紧域。离散拓扑也是一种局部紧拓扑。仅就非平凡的和非离散的情形而论,局部紧域有一些显著的性质。首先,每个局部紧域 (F,τ)都有一个绝对值φ,使得由φ所生成的拓扑与τ相同。其次,还有定理:设(F,τ)是一个局部紧域。如果它是连通的,那么它连续同构于R或C(关于通常绝对值的拓扑);如果它是完全不连通的,那么它就连续同构于 p进数域Qp的一个有限扩域,或者某个有限域K上的形式幂级数域 K((x))的有限扩域。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2017-10-13
太范了,不同语言环境赋值语句都不同。
一般直接用“=”就行,map用put(key, value), list用add~

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网