试举例分析论述:矩阵A对应的齐次方程组与非齐次方程组解之间的关系并给出非齐次方程组的通解表达式

如题所述

线性方程组分为齐次线性方程和非齐次方程组。一般n元线性方程组的形式是

向左转|向右转

写成矩阵形式就是AX=B,其中A是系数矩阵(m×n),X与B都是1×m列向量

当B=0时,称为齐次线性方程。

方程的解存性可以看做是用A的列向量能否表示出列向量B的问题,所以当B=0时,至少有一组解即X=0,称之平凡解;而当A列向量线性无关时,仅有零解;线性相关时就有无数组解,但是解空间(向量生成的空间)的维数就等于X维数与A的秩的差(n-r,r为A的秩);解空间的基称为方程组的基础解系。

当B≠0时,称为非齐次线性方程(B=0的齐次方程组称为与之对应的齐次线性方程组)。与齐次方程组不同,它可能没有解,有解当且仅当A的秩等于AB合并组成的增广矩阵的秩,说直白就是A的列向量可以表示出B,或者A的列向量组与增广矩阵的列向量组等价。而且有解时,解向量组的秩也等于X的维数与A的秩的差。

齐次方程组的解与非齐次方程组的解关系是:非齐次组的解向量等于齐次组的解+非齐次组的一个特解;也就是说只要求出齐次组的解空间的一组基础解系,比如是α1,α2,……,αs,一个非齐次组的特解比如是X1,,那么非齐次组所有解可以表示为:X=X1+C1α1+C2α2+……+Csα,C1,……,Cs为任意常数。所以求非齐次组的通解只需求出其一个特解,再求出对应的齐次组的基础解系即可。

区别是:齐次组的解可以形成线性空间(不空,至少有0向量,关于线性运算封闭);非齐次组的解不能形成线性空间,因为其解向量关于线性运算不封闭:任何齐次组的解得线性组合还是齐次组的解,但是非齐次组的任意两个解其组合一般不再是方程组的解(除非系数之和为1)而任意两个非齐次组的解的差变为对应的齐次组的解。注意到这一点,就知道,齐次组有基础解系,而非齐次只有通解,不能称为基础解系,因这些解不能生成解空间(线性运算不封闭)。

温馨提示:答案为网友推荐,仅供参考

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网