编译器生成的汇编语句执行顺序为什么与C代码顺序不同

如题所述

不影响语义的前提下编译器可以任意重排代码顺序;
在乱序执行(Out-of-Order)的CPU里,机器码的执行也可以不按照你在“汇编”层面上看到的顺序执行,只要不影响语义。
所以说这些中间步骤的顺序,作为底层细节平时不需要那么在意——它们多半跟原始源码的顺序是不一样的。

现代优化编译器优化的思路之一是“基于依赖的优化”(dependence-based optimization)。题主引用的CSAPP的例子:

int arith(int x, int y, int z) {
int t1 = x + y;
int t2 = z * 48;
int t3 = t1 & 0xFFFF;
int t4 = t2 * t3;
return t4;
}

所有涉及运算的值都是局部标量变量(local scalar variable),这是最便于编译器做分析的情况,所有依赖都可以显式分析。
由于整个函数没有分支,这里也不需要讨论控制依赖(control dependence),只要讨论数据依赖(data dependence)就好。
把数据依赖图画出来是个DAG(这里正好是棵树,特例了):

x y z 48
\ / \ /
t1 0xFFFF t2
\ / /
t3 /
\ /
t4

优化必须要满足的约束是:每个节点求值之前,其子节点(依赖的数据源)必须要先求了值。
显然,t1和t2之间没有依赖关系,它们的相对求值顺序怎样重排都没关系。

有本我很喜欢的书,里面讲的是各种基于依赖的优化:Optimizing Compilers for Modern Architectures - A Dependence-based Approach

以上是理论部分。

================================================================

下面来看例子。

我们可以用一个实际编译器来看看CSAPP的例子编译出来的结果:

.text
# -- Begin arith
.p2align 4,,15
.globl arith
.type arith, @function
arith:
.p2align 4,,7
/*.L0:*/ /* Block BB[54:2] preds: none, freq: 1.000 */
movl 8(%esp), %edx /* ia32_Load T[139:10] -:1:22 */
addl 4(%esp), %edx /* ia32_Add Iu[141:12] -:2:14 */
movzwl %dx, %edx /* ia32_Conv_I2I Iu[142:13] -:4:15 */
imull 12(%esp), %edx /* ia32_IMul Iu[143:14] -:5:15 */
leal (%edx,%edx,2), %eax /* ia32_Lea Iu[144:15] -:5:15 */
shll $0x4, %eax /* ia32_Shl Iu[146:17] -:5:15 */
ret /* ia32_Return X[152:23] -:6:3 */
.size arith, .-arith
# -- End arith

这里用的是libFirm。可见它跟CSAPP书里所说的汇编的顺序又有所不同。这也是完全合理的。
这个编译结果的顺序是:

edx = y;
edx += x;
edx = zeroextend dx; // edx = edx & 0xFFFF
edx *= z;
eax = edx * 3;
eax <<= 4; // eax = eax * 16

也是完全符合依赖关系的约束的一种顺序。
之所以用libFirm举例是因为它的中间表示(Intermediate Representation)是一种程序依赖图(Program Dependence Graph),可以很方便的看出控制与数据依赖。把CSAPP那里例子对应的libFirm IR画出来,是这个样子的:
(这张图跟我前面画的数据依赖图正好是左右翻转的,不过意思一样。(这张图跟我前面画的数据依赖图正好是左右翻转的,不过意思一样。
Arg 0、1、2分别代表x、y、z。白色方块是普通数据节点,黄色方块是常量节点,蓝色方块是内存相关节点,红色方块是控制流节点,粉红色方块是特殊的开始/结束节点。)

某版LLVM生成的代码:

; ModuleID = '/tmp/webcompile/_16355_0.bc'
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-ellcc-linux"

; Function Attrs: nounwind readnone
define i32 @arith(i32 %x, i32 %y, i32 %z) #0 {
entry:
%add = add nsw i32 %y, %x
%mul = mul nsw i32 %z, 48
%and = and i32 %add, 65535
%mul1 = mul nsw i32 %mul, %and
ret i32 %mul1
}

attributes #0 = { nounwind readnone "less-precise-fpmad"="false" "no-frame-pointer-elim"="false" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }

!llvm.ident = !{!0}

!0 = !{!"ecc 0.1.10 based on clang version 3.7.0 (trunk) (based on LLVM 3.7.0svn)"}

最终生成的x86汇编:

.text
.file "/tmp/webcompile/_15964_0.c"
.globl arith
.align 16, 0x90
.type arith,@function
arith: # @arith
# BB#0: # %entry
movl 8(%esp), %eax
addl 4(%esp), %eax
movzwl %ax, %eax
imull 12(%esp), %eax
shll $4, %eax
leal (%eax,%eax,2), %eax
retl
.Ltmp0:
.size arith, .Ltmp0-arith

.ident "ecc 0.1.10 based on clang version 3.7.0 (trunk) (based on LLVM 3.7.0svn)"
.section ".note.GNU-stack","",@progbits

GCC 4.9.2 x86-64:

arith(int, int, int):
leal (%rdx,%rdx,2), %eax
addl %edi, %esi
movzwl %si, %esi
sall $4, %eax
imull %esi, %eax
ret

Zing VM Server Compiler x86-64:

# edi: x
# esi: y
# edx: z
movl %edx, %eax
shll $0x4, %eax
leal (%rsi, %rdi, 1), %ecx
shll $0x5, %edx
addl %edx, $eax
movzwl %ecx, %edx
imull %edx, %eax
温馨提示:答案为网友推荐,仅供参考

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网