高中数学归纳法解题过程

如题所述

数学上证明与
自然数
n有关的命题的一种特殊方法,它主要用来研究与
正整数
有关的数学问题,在高中数学中常用来证明等式成立和数列通项公式成立。
(一)第一数学归纳法:
  一般地,证明一个与自然数n有关的命题p(n),有如下步骤:
  (1)证明当n取第一个值n0时命题成立。n0对于一般数列取值为0或1,但也有特殊情况;
  (2)假设当n=k(
k≥n0,k为自然数
)时命题成立,证明当n=k+1时命题也成立。
  综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立。
  (二)第二数学归纳法:
  对于某个与自然数有关的命题p(n),
  (1)验证n=n0时p(n)成立;
  (2)假设n0≤n<k时p(n)成立,并在此基础上,推出p(k+1)成立。
  综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立。
  (三)倒推归纳法(反向归纳法):
  (1)验证对于无穷多个自然数n命题p(n)成立(无穷多个自然数可以是一个无穷数列中的数,如对于算术几何不等式的证明,可以是2^k,k≥1);
  (2)假设p(k+1)(k≥n0)成立,并在此基础上,推出p(k)成立,
  综合(1)(2),对一切自然数n(≥n0),命题p(n)都成立;
  (四)螺旋式归纳法
  对两个与自然数有关的命题p(n),q(n),
  (1)验证n=n0时p(n)成立;
  (2)假设p(k)(k>n0)成立,能推出q(k)成立,假设
q(k)成立,能推出
p(k+1)成立;
  综合(1)(2),对一切自然数n(≥n0),p(n),q(n)都成立。
数学归纳法的变体  在应用,数学归纳法常常需要采取一些变化来适应实际的需求。下面介绍一些常见的数学归纳法变体。
从0以外的数字开始
  如果我们想证明的命题并不是针对全部自然数,而只是针对所有大于等于某个数字b的自然数,那么证明的步骤需要做如下修改:
  第一步,证明当n=b时命题成立。
第二步,证明如果n=m(m≥b)成立,那么可以推导出n=m+1也成立。
  用这个方法可以证明诸如“当n≥3时,n2>2n”这一类命题。
只针对偶数或只针对奇数
  如果我们想证明的命题并不是针对全部自然数,而只是针对所有奇数或偶数,那么证明的步骤需要做如下修改:
  奇数方面:
  第一步,证明当n=1时命题成立。
第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。
  偶数方面:
  第一步,证明当n=0或2时命题成立。
第二步,证明如果n=m成立,那么可以推导出n=m+2也成立。
递降归纳法
  数学归纳法并不是只能应用于形如“对任意的n”这样的命题。对于形如“对任意的n=0,1,2,...,m”这样的命题,如果对一般的n比较复杂,而n=m比较容易验证,并且我们可以实现从k到k-1的递推,k=1,...,m的话,我们就能应用归纳法得到对于任意的n=0,1,2,...,m,原命题均成立。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2019-04-05
递推的基础:
证明当n
=
1时表达式成立。
递推的依据:
证明如果当n
=
m时成立,那么当n
=
m
+
1时同样成立。(递推的依据中的“如果”被定义为归纳假设。
不要把整个第二步称为归纳假设。)
这个方法的原理在于第一步证明起始值在表达式中是成立的,然后证明一个值到下一个值的证明过程是有效的。如果这两步都被证明了,那么任何一个值的证明都可以被包含在重复不断进行的过程中。
数学归纳法有两个关键点需要牢记
1。证明当n为某一个值时,结论是成立的。
2。假定n=k时成立,证明n=k+1时,结论也是成立的。
第一条的证明是第二条假设能够成立的依据。可以想象,有了第一条的证明,比如n=1时成立,那么在第二条中假定n=k时成立,就有了依据。这时k=1。
经过第二条的证明,k=2时结论也就成立了。于是在k=2时假设是一定成立的......
如果没有第一条的证明,那么第二条的假设就不一定成立了。
数学归纳法有两个关键步骤:
1.证明当n为某一个值时,结论成立;
2.假定n=k时成立,证明n=k+1时,结论也成立。
如果只证明第二条,不证明第一条的话,是会出现你说的矛盾,这个叫循环论证,是不严密甚至是错的。
一定要先证明一个特殊情况成立的时候才能用第二步证明其他情况也成立。
举例:
求证:5个连续自然数的积能被120整除
答案:
1、当n=1时1*2*3*4*5=120,能被120整除,原命题成立
2、假设当n=k时原命题成立,则当n=k+1时
(k+1)(k+2)(k+3)(k+4)(k+5)
=k(k+1)(k+2)(k+3)(k+4)
+5(k+1)(k+2)(k+3)(k+4)
因为k(k+1)(k+2)(k+3)(k+4)是120的倍数
只需证5(k+1)(k+2)(k+3)(k+4)是120的倍数
即欲证(k+1)(k+2)(k+3)(k+4)是24的倍数
四个数中两奇两偶,一定有4的倍数,3的倍数,还有另一个偶数,所以一定能被4*2*3=24整除

即当n=k+1时原命题成立
所以,综合1、2、,原命题对任何自然数成立
第2个回答  2020-03-21
令n=1
显然证明成立..
假设令n=K时
证明仍成立
则当n=K+1时
利用n=K
所得的式子带进去
化成关于n=K+1的式子即可

相关了解……

你可能感兴趣的内容

本站内容来自于网友发表,不代表本站立场,仅表示其个人看法,不对其真实性、正确性、有效性作任何的担保
相关事宜请发邮件给我们
© 非常风气网